

Canadian Association for Neuroscience

Satellite meeting on careers

25th May, 2014 Mark Patterson Executive Director, eLife

SCENES FROM THE POSTDOCALYPSE

http://www.motherjones.com/environment/ 2014/03/inquiring-minds-ethan-perlsteinpostdocalypse "We're fond of saying that we should prepare people for alternative careers, without realizing that we're the alternative career."

> Greg Petsko, Brandeis University Chaired a National Academy of Sciences committee on the postdoctoral experience

Point of view: A fair deal for PhD students and postdocs

Henry R Bourne 📨

University of California at San Francisco, United States

DOI: http://dx.doi.org/10.7554/eLife.01139 Published October 1, 2013

Rescuing US biomedical research from its systemic flaws

Bruce Alberts^a, Marc W. Kirschner^b, Shirley Tilghman^{c,1}, and Harold Varmus^d

^aDepartment of Biophysics and Biochemistry, University of California, San Francisco, CA 94158; ^bDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; ^cDepartment of Molecular Biology, Princeton University, Princeton, NJ 08540; and ^dNational Cancer Institute, Bethesda, MD 20892

http://www.pnas.org/content/early/2014/04/09/1404402111.full.pdf+html

myscicareer.com

First-person science career stories

Nicole Husain – Educational Game Design

28 JAN 2014

🛔 by MySciCareer Editor | Job: Education, Media, Science Communication | Most recent science training: Post doc | 📿

It was the first CV I ever sent out that included my scholarships and publications as well as my video gaming experience.

Nicole Husain

Name: Nicole Husain Job: Educational game designer Source: The Node [original post from February 2011]

Excerpt:

For as long as I can remember, I've always loved science, particularly the way you could ask any question you wanted and then figure out how to determine the answer. When I was 10 that meant 'do walnut shells float' and when I was 25 that meant 'how does an epithelial lumen form between photoreceptor cells in a Drosophila retina.' I did my undergrad at the University of Toronto at Mississauga, hoping to get into the Forensic Science program with biology as my major. Along the way I had some amazing hands-on research opportunities that really opened

Education	
High school	
University	
Government	
Industry	
Biotech	
Chemical Industry	
Food sciences	
Law	
Medical	
Clinical practice	
Clinical research	
Policy	
Publishing	
Editorial	
Marketing/Outreach	
Production	
Technology	
Research	
Academia – Other	

One career path

Publishing in a nutshell

• Marketing

......

Primary research is a very different ball game

https://flic.kr/p/7ubn8u

PAS

Reviews vs primary research

Qualities, attributes

- Great communicator written, oral, social media
- Thick-skinned, but empathic and diplomatic
- Enthusiastic about science and its communication
- Detail-oriented
- Organized, multi-tasker
- Love deadlines
- Good in teams

What does publishing offer?

- Maintaining a broad view of science
- Supporting the progress of science
- Writing, editing, speaking

Other roles and organizations that offer opportunities similar to publishing

A few tips

- Take advantage of opportunities
- Try things out
- Talk to people
- Find support groups
- Consider your options broadly
- In the meantime, do great science
- Interviewing
 - why you want the job
 - not why you're leaving the lab
 - make yourself stand out

The research communication landscape is changing

A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by Gαs signaling

Stanislav Nagy Charles Wright Nora Tramm Nicholas Labello Stanislav Burov David Biro

Abstract

Despite their simplicity, longitudinal studies of inverte are rare. We thus sought to characterize behavioral t *Caenorhabditis elegans*, from the mid fourth larval st mid young adult stage. We found that, outside of leth

exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased $G_{\alpha s}$ signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased $G_{\alpha s}$ signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A

mamics of the active wakefulness state during the three rior to L4 lethargus in wild-type animals.

ogram of the durations of epochs of active wakefulness plotted on a ale. Epoch durations longer than 3 min exhibited a power-law n with an exponent $-(1+\alpha) = -1.83\pm0.31$. (B) Two displacements along of a sample trace of the fraction of forward locomotion, Δy_1 (between es) and Δy_2 (between empty circles). Both displacements correspond tical time interval, Δt . The time-averaged mean square displacement s calculated in two steps: (i) using a sliding window to calculate the ared displacements along traces of each of the individual animals and Cox, 2006); (ii) averaging the results obtained from the previous I animals. (C) The TMSD plotted on a log-log scale as a function of the val, Δt . The TMSD was calculated for the subset of N = 20 animals a 3 hr prior to the onset of L4leth was available (N = 20). The TMSD power-law growth with the exponent $(1-\alpha) = 0.32 \pm 0.03$, consistent ue of $\alpha \approx 0.7$. Inset: for the purpose of illustration, the TMSD for a twokov chain with a comparable mean duration of epochs is shown to reach its saturation value at $\Delta t \approx 400$ s (vertical dashed line).

DOI: http://dx.doi.org/10.7554/eLife.00782.005

Figure 4.

Ivan Grubisic

Lens 0.2.0

<

ر ۲

Mark Patterson m.patterson@elifesciences.org